Inverse functions:

Let f and g be two functions

\[f(g(x)) = x \quad \forall \ x \text{ in the domain of } g \]

AND

\[g(f(x)) = x \quad \forall \ x \text{ in the domain of } f \]

The function g is the inverse of the function f and is denoted by f^{-1} (read "f inverse").

Thus,

\[f(f^{-1}(x)) = x \quad \text{AND} \quad f^{-1}(f(x)) = x \]

The domain of f is equal to the range of f^{-1}, and vice versa.

To show that $f(x)$ and $g(x)$ are inverses we "verify" that $f(g(x)) = x$ AND $g(f(x)) = x$.

Finding the inverse of a function:

1. Replace $f(x)$ with y

2. Interchange x and y

3. Solve for y. If this equation does not define y as a function of x, then f has no inverse function.

4. If this inverse IS a function, replace y with $f^{-1}(x)$

To verify, show that $f(f^{-1}(x)) = x$ AND $f^{-1}(f(x)) = x$