The Fundamental Theorem of Algebra:
If \(f(x) \) is a polynomial of degree \(n \), where \(n \geq 1 \), then the equation \(f(x) = 0 \) has at least one complex (may be real, may be imaginary) root.

Actually, if \(f(x) \) is a polynomial of degree \(n \), where \(n \geq 1 \), then \(f(x) = 0 \) has EXACTLY \(n \) roots, where roots are counted according to their multiplicity.

Linear Factorization Theorem:
If \(f(x) = a_n x^n + a_{n-1} x^{n-1} \ldots + a_0 \), where \(n \geq 1 \) and \(a_n \neq 0 \), then \(f(x) = a_n (x - c_1)(x - c_2) \ldots (x - c_n) \), where \(c_1, c_2, \ldots, c_n \) are complex \#s (may be real and not necessarily distinct).

That is: An \(n \)th-degree polynomial can be expressed as the product of a nonzero constant and \(n \) linear factors.