Descartes's Rule of Signs

\[f(x) = 3x^7 - 2x^5 - x^4 + 7x^2 + x - 3 \]

\[f(-x) = -3x^7 + 2x^5 - x^4 + 7x^2 - x - 3 \]

Rule of Signs Let \(f(x) = a_nx^n + a_{n-1}x^{n-1} \ldots + a_0 \) be a poly w/ real coefficients:

1. The number of positive real zeros of \(f \) is either:
 a) the same as the number of sign changes of \(f(x) \) or
 b) less than the number by a positive even integer

 *If \(f \) has just one sign change we know \(f \) has exactly one real positive root.

2. The number of negative real zeros of \(f \) works exactly the same EXCEPT we use \(f(-x) \) to count the sign changes.

\[f(x) = x^4 - 14x^3 + 71x^2 - 154x + 120 \]

\[\# \text{ of possible positive real roots} = ? \]

\[\# \text{ of possible negative real roots} = ? \]