Matrix notation:

\[A = [a_{ij}] \]

If a matrix has order of \(m \times n \), it has \(m \) rows and \(n \) columns.

\[A = \begin{bmatrix} 3 & 2 & 0 \\ -4 & -5 & \frac{1}{5} \end{bmatrix} \] has \(_ \times _ \) order

\(a_{22} \) is the element \(-5\)

A square matrix has the same \# of rows as columns. \((m = n)\)

Equality of matrices:

Two matrices \(A \) and \(B \) are equal iFF they have the same order \(m \times n \) and \(a_{ij} = b_{ij} \) for all rows and columns \((i = 1, 2, \ldots, m)\) \((j = 1, 2, \ldots, n)\).

If \(A = B \) and \(A = \begin{bmatrix} x + y + 1 \\ 2 \\ z \end{bmatrix} \) \& \(B = \begin{bmatrix} 1 & 5 \\ 2 & 6 \end{bmatrix} \)

Then \(x = 1 \), \(y + 1 = 5 \), \(z = 3 \)
\(y = 4 \)