SOLVING SYSTEMS OF EQUATIONS WITH 3 VARIABLES

SYSTEM:
\[A: \quad -3x + y - z = -10 \]
\[B: \quad -4x + 2y + 3z = -1 \]
\[C: \quad 2x + 3y - 2z = -5 \]

Decide which variable to eliminate first. Either \(y \) or \(z \) would be good choices here, since in \[A \] their coefficients are 1 and -1.

Let's eliminate \(z \). We will have to do this twice.

Using \[A \] and \[B: \]
\[3A \]
\[-9x + 3y - 3z = -30 \]
\[B \]
\[-4x + 2y + 3z = -1 \]

Let's call this \(D \)
\[-13x + 5y = -31 \]

Using \[A \] and \[C: \]
\[-2A \]
\[6x - 2y + 2z = 20 \]
\[C \]
\[2x + 3y - 2z = -5 \]

Let's call this \(E \)
\[8x + y = 15 \]

Now use \(D \) and \(E \) to eliminate another variable.

\[D \]
\[-13x + 5y = -31 \]
\[-5E \]
\[40x - 5y = -75 \]
\[-53x = -106 \]
\[x = 2 \]

Plug \(x = 2 \) into \[A \] before to find \(z \).

\[A \]
\[-3(2) + 2 + z = -10 \]
\[-7 + z = -10 \]
\[z = 3 \]

Plug \(x = 2 \) into \(E \) or \(F \) to find \(y \).

\[E \]
\[8(2) + y = 15 \]
\[16 + y = 15 \]
\[y = -1 \]

Solution: \((2, -1, 3) \)