2.3 The Multiplication Property of Equality

Identify Reciprocals

In Section 1.10, we introduced the reciprocal (or multiplicative inverse) of a number. Recall that two numbers are reciprocals of each other when their product is 1. Some examples of numbers and their reciprocals follow.

<table>
<thead>
<tr>
<th>Number</th>
<th>Reciprocal</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/2</td>
<td>(2)(1/2) = 1</td>
</tr>
<tr>
<td>-3/5</td>
<td>-5/3</td>
<td>(-3/5)(-5/3) = 1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>(-1)(-1) = 1</td>
</tr>
</tbody>
</table>

The reciprocal of a positive number is a positive number and the reciprocal of a negative number is a negative number. Note that 0 has no reciprocal. Why?

In general, if \(a \) represents any nonzero number, its reciprocal is \(\frac{1}{a} \). For example, the reciprocal of 3 is \(\frac{1}{3} \) and the reciprocal of \(-2\) is \(\frac{1}{-2} \) or \(-\frac{1}{2} \). The reciprocal of \(-\frac{3}{5}\) is \(\frac{1}{-\frac{3}{5}} \), which can be written as \(1 \div \left(-\frac{3}{5}\right) \). Simplifying, we get \(\left(\frac{1}{1}\right)\left(-\frac{5}{3}\right) = -\frac{5}{3} \).

Thus, the reciprocal of \(-\frac{3}{5}\) is \(-\frac{5}{3}\).
2 Use the Multiplication Property to Solve Equations

In Section 2.2, we used the addition property of equality to solve equations of the form \(x + a = b \), where \(a \) and \(b \) represent real numbers. In this section, we use the multiplication property of equality to solve equations of the form \(ax = b \), where \(a \) and \(b \) represent real numbers.

It is important that you recognize the difference between equations like \(x + 2 = 8 \) and \(2x = 8 \). In \(x + 2 = 8 \), the 2 is a term that is being added to \(x \), so we use the addition property to solve the equation. In \(2x = 8 \), the 2 is a factor of \(2x \). The 2 is the coefficient multiplying the \(x \), so we use the multiplication property to solve the equation. The multiplication property of equality is used to solve linear equations where the coefficient of the \(x \)-term is a number other than 1.

Now we present the multiplication property of equality.

Multiplication Property of Equality

If \(a = b \), then \(a \cdot c = b \cdot c \) for any real numbers \(a \), \(b \), and \(c \).

The multiplication property means that both sides of an equation can be multiplied by the same nonzero number without changing the solution. The multiplication property **can be used to solve equations of the form** \(ax = b \). We can isolate the variable in equations of this form by multiplying both sides of the equation by the reciprocal of \(a \), which is \(\frac{1}{a} \). Doing so makes the numerical coefficient of the variable, \(x \), become 1, which can be omitted when we write the variable.

10. \(5x = 50 \)

\[
\frac{5x}{5} = \frac{50}{5} \quad \Rightarrow \quad x = 10
\]

12. \(\frac{y}{3} = 3 \)

\[
\frac{\frac{y}{3}}{\frac{1}{3}} = \frac{3 \cdot \frac{y}{3}}{3 \cdot \frac{1}{3}} \quad \Rightarrow \quad y = 15
\]

50. \(\frac{2}{7}x = 7 \)

\[
\frac{\frac{2}{7}x}{\frac{2}{7}} = \frac{7}{\frac{2}{7}} \quad \Rightarrow \quad x = \frac{49}{2}
\]

In Example 1, we multiplied both sides of the equation \(9x = 63 \) by \(\frac{1}{9} \) to isolate the variable. We could have also isolated the variable by dividing both sides of the equation by 9, as follows:

\[
\frac{9x}{9} = \frac{63}{9} \quad \Rightarrow \quad \frac{1}{9}x = \frac{7}{1} \quad \text{Divide both sides by 9.}
\]

\[
x = 7
\]

We can do this because dividing by 9 is equivalent to multiplying by \(\frac{1}{9} \). **Since division can be defined in terms of multiplication** \(\left(\frac{a}{b} \right. \text{ means } a \cdot \frac{1}{b} \). **the multiplication property also allows us to divide both sides of an equation by the same nonzero number.** This process is illustrated in Examples 4 through 6.
58. \(-9 = \frac{-5}{3} n\)

\[-9 = -\frac{5}{3} n\]

\[\left(\frac{-2}{3}\right) \left(\frac{-9}{7}\right) = \left(\frac{-2}{3}\right) \left(\frac{-1}{3}\right)\]

\[\frac{22}{\frac{8}{3}} = 1 n\]

\[\frac{22}{\frac{8}{3}} = n\]

40. \(-2b = -\frac{4}{5}\)

\[-2b = \frac{-4}{5}\]

\[-\frac{2}{-2} = \frac{-4}{5} \cdot \frac{5}{-2}\]

\[-\frac{2}{2} = \frac{-4}{5} \cdot \frac{5}{-2}\]

\[-\frac{2}{2} = \frac{2}{5}\]

\[b = \frac{2}{5}\]

\[\left(\frac{-1}{2}\right) - \frac{2}{1} = \frac{b - \left(\frac{1}{2}\right)}{5}\]

\[b = \frac{2}{5}\]

\[\frac{2}{2} \cdot \frac{2}{3} x = \frac{3}{2} \cdot \frac{12}{5}\]

\[x = 18\]

22. \(16 = -4y\)

\[\frac{16}{-4} = \frac{-4y}{-4}\]

\[y = 4\]

36. \(-3.88 = 1.94y\)

\[\frac{-3.88}{1.94} = \frac{1.94y}{1.94}\]

\[y = -2\]

\[\frac{-3.88}{1.94} = \frac{1.94y}{1.94}\]

\[y = -2\]
3 Solve Equations of the Form \(-x = a\)

When solving an equation, we may obtain an equation like \(-x = 7\). This is not a solution since \(-x = 7\) means \(-1x = 7\). The solution to an equation is of the form \(x = \) some number. When an equation is of the form \(-x = 7\), we can solve for \(x\) by multiplying both sides of the equation by \(-1\), as illustrated in the following example.

EXAMPLE 9 Solve the equation \(-x = 7\).

Solution \(-x = 7\) means that \(-1x = 7\). We are solving for \(x\), not \(-x\). We can multiply both sides of the equation by \(-1\) to isolate \(x\) on the left side of the equation.

\[
\begin{align*}
-x &= 7 \\
-1x &= 7 \\
(-1)(-1x) &= (-1)(7) \\
1x &= -7 \\
x &= -7
\end{align*}
\]

Check:

\[
\begin{align*}
-x &= 7 \\
-(-7) &= 7 \\
7 &= 7 & \text{True}
\end{align*}
\]

Thus, the solution is \(-7\).

24. \(-x = 9\)
26. \(-x = -15\)
62. \(-9x = -45\)

64. \(\frac{1}{3}x = 15\)

\[
\begin{align*}
\frac{1}{3}x &= \frac{15}{3} \\
x &= 45
\end{align*}
\]

\[
\begin{align*}
\frac{15}{1} \div \frac{1}{3} &= \frac{15}{1} \times \frac{3}{1} \\
\frac{1}{3}x &= \frac{15}{1} \div \frac{3}{1} \\
x &= 45
\end{align*}
\]
Concept/Writing Exercises

1. Explain the multiplication property of equality.

2. Explain why the multiplication property allows us to divide both sides of an equation by a nonzero quantity.

3. a) If \(-x = a\), where \(a\) represents any real number, what does \(x\) equal?
 b) If \(-x = 5\), what is \(x\)?
 c) If \(-x = -5\), what is \(x\)?

4. When solving the equation \(-2x = 5\), would you divide both sides of the equation by \(-2\) or by \(5\)? Explain.

5. When solving the equation \(3x = 5\), would you divide both sides of the equation by \(3\) or by \(5\)? Explain.

6. When solving the equation \(4 = \frac{x}{3}\), what would you do to isolate the variable? Explain.

7. When solving the equation \(x = 3\), what would you do to isolate the variable? Explain.

8. When solving the equation \(ax = b\) for \(x\), would you divide both sides of the equation by \(a\) or \(b\)? Explain.