Worksheet #2

Problem #3

Gary works 60 hrs.

1/2 for Overtime
Starts at 40 hrs.
Gross Pay = 591.50

1) Find his pay rate

2) \(x = \text{pay rate} \)

3) \[\text{Regular Pay} + \text{Overtime Pay} = \text{Gross Pay} \]

\[
40x + 20(1.5x) = 591.50
\]

\[40x + 30x = 591.50 \]

\[
\frac{70x}{70} = \frac{591.50}{70}
\]

\(x = 8.45 \)
1) Find Length & Width
2) \[w = \text{width} \]
\[2w + 5 = \text{Length} \]
3) Equation
\[2 \text{widths} + 2 \text{lengths} = \text{Perimeter} \]
\[2w + 2(2w+5) = 70 \]
\[2w + 2w + 10 = 70 \]
\[4w + 10 = 70 \]
\[4w = 60 \]
\[w = 15 \]
In a parallelogram the opposite angles have the same measures. Each of the two larger angles in a parallelogram is 35° less than 4 times the smaller angles. Find the measure of each angle.

1) Find Measure of Each Angle
2) Opposite Angles Are the Same
 \[x = \text{Smaller } \angle \]
 \[4x - 35 = \text{Larger } \angle \]
 \[\text{Identity Variables} \]
3) The Sum of the 4's of an 8-sided Figure Is 360°
 \[x + x + 4x - 35 + 4x - 35 = 360^\circ \]
 \[10x - 70 = 360^\circ \]
 \[+70 \quad +70 \]
 \[10x = 430 \]
 \[x = 43^\circ \]
 \[4x - 35 = 4(43) - 35 = 137^\circ \]
Section 3.9

Distance = Rate \times Time

\[D = R \times T \]

| 24 | 8 mph | \[t = \frac{3}{3} \] |
| 33 | 11 mph | \[d_2 = 11t \] |

\[d_1 = 8t \]

Sonja

Jari

\[d_2 = d_1 + 9 \]

\[d_2 - d_1 = 9 \]

\[t = \text{time running} - \text{same for both runners} \]

\[d_2 - d_1 = 9 \]

\[11t - 8t = 9 \]

\[\frac{3t}{3} = \frac{9}{3} \]

\[t = 3 \text{hr.} \]
\[
\begin{align*}
\text{Large} + \text{Small} &= 9.8 \text{ miles} \\
\frac{7}{2.8} &
\begin{align*}
d_1 + d_2 &= 9.8 \text{ miles} \\
\frac{7}{r+4} + \frac{7}{r} &= 9.8 \\
7r + 2.8 + 7r &= 9.8 \\
14r + 2.8 &= 9.8 \\
14r &= 7.0 \\
\frac{14r}{14} &= \frac{7.0}{14} \\
r &= 5 \text{ mph}
\end{align*}
\end{align*}
\]

\[
\begin{align*}
\text{Large} &= 7 \text{ mph} \\
\text{Small} &= 5 \text{ mph} \\
d_1 &= 9(7) = 63 \text{ miles} \\
d_2 &= 5(5) = 25 \text{ miles}
\end{align*}
\]
Run 11 miles
All together

\[d_1 + d_2 = 11 \text{ miles} \]

\[\text{Distance} = \text{Rate} \times \text{Time} \]

\[
\begin{array}{ccc}
\text{Sun} & d_1 & 6 \text{ mph} & t \\
\text{Mother} & d_2 & 4 \text{ mph} & t \\
\end{array}
\]

\[d_1 = 6t \]
\[d_2 = 4t \]

Time is same for both Sun and The Sea.

\[d_1 + d_2 = 11 \]
\[6t + 4t = 11 \]
\[10t = 11 \]
\[t = \frac{11}{10} \text{ hr.} \]

\[66 \text{ mph} \]
\(\frac{20.4 \text{ miles}}{6 \text{ hr.}} = \frac{3.4 \text{ miles}}{\text{hr.}} \)

\[d_1 + d_2 = 20.4 \text{ miles} \]

\[D = R \times T \]

<table>
<thead>
<tr>
<th>(d_1)</th>
<th>3.4</th>
<th>(T = \frac{23}{6} = 3.83)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_2)</td>
<td>2.6</td>
<td>(T = \frac{23}{6} = 2.83)</td>
</tr>
</tbody>
</table>

\[d_1 = 3.4T \]
\[d_2 = 2.6(T-1) \]

\[d_1 + d_2 = 20.4 \]

\[3.4T + 2.6(T-1) = 20.4 \]
\[3.4T + 2.6T - 2.6 = 20.4 \]
\[6T - 2.6 = 20.4 \]
\[6T + 2.6 = 22 \]
\[\frac{6T = 22}{6} \]
\[t = \frac{35}{6} \text{ hr} \]
Aleksandra Tomich invested $8,760, part at 6% simple interest and part at 3% simple interest for a period of 1 year. How much did she invest at each rate if each account earned the same interest?

Aleksandra invested \square at 6% and \square at 3%.

\[
\text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} = \frac{\text{Principal} \times \text{Rate} \times \text{Time}}{\text{Time in Years}}
\]

\[
\begin{array}{ccc}
\text{Principal} & \times \text{Rate} & \times \text{Time} = \text{Interest} \\
3\% & \times 0.03 & 1 \\
6\% & \times 0.06 & 1 \\
\text{Total} & & 1 \\
8760 - x & \times 0.06 & 1 \\
8760 - x & & 1 \\
8760 & & ?
\end{array}
\]

Interest for Both Investments Is The SAME

\[
\text{Equation} - \text{Interest Equal}
\]

\[
0.03x = 0.06(8760 - x)
\]

\[
0.03x = 525.6 - 0.06x
\]

\[
0.09x = 525.6
\]

\[
x = 5840
\]

6% = $8,760 - 5,840 = 2,920$