In Exercises 13–26, find M_x, M_y, and (\bar{x}, \bar{y}) for the lamina of uniform density ρ bounded by the graphs of the equations.

13. $y = 1, y = 0, x = 2$
14. $y = -x + 3, y = 0, x = 0$
15. $y = \sqrt{x}, y = 0, x = 4$
16. $y = \frac{1}{2}x, y = 0, x = 3$
17. $y = x, y = x^2$
18. $y = \sqrt{2x}, y = 0, x = 1$
19. $y = x^2 + 4x + 3, y = x + 2$

\[-x^2 + 3x = 0 \]
\[-x(x-3) = 0 \]
\[-x^3 = 0 \text{ or } x^3 = 0 \]
\[x = 0 \text{ or } x = 3 \]

\[(0, 0) \quad (3, 0) \]

From

\[m = \rho \int_0^3 \left((-x^2 + 3x) - (x^2) \right) dx \]
\[+ \rho \int_0^3 (-x^2 + 3x) \ dx \]
\[= \rho \left[\left(-\frac{x^3}{3} + \frac{3x^2}{2} \right) \right]_0^3 \]
\[= \rho \left(-\frac{9}{3} + \frac{27}{2} \right) \]

\[M_x = \rho \int_0^3 \left(x^2 + 3x \right) \ dx \]
\[= \rho \left(\frac{3}{2} \right) \]

\[\bar{x} = \frac{M_x}{m} \]

\[\bar{y} = \frac{\rho}{m} \int_0^3 \left(x^3 \right) dx \]

\[\rho = \frac{M_y}{m} \]

\[\rho = \frac{\frac{3}{2}}{m} \]

\[\bar{y} = \frac{\rho}{m} \int_0^3 \left(x^3 \right) dx \]

\[= \frac{3}{2} \]

\[\bar{y} = \frac{3}{2} \]

Section 2.6

\[\bar{y} = \frac{3}{2} \]

\[\bar{x} = \frac{M_x}{m} \]

\[\bar{y} = \frac{3}{2} \]

Center of Mass $=(\bar{x}, \bar{y})$
23. **Pumping Water** A hemispherical tank of radius 6 feet is positioned so that its base is circular. How much work is required to fill the tank with water through a hole in the base if the water source is at the base?

Volume of a Disk:

\[V = \pi r^2 h = \text{Volume of Disk} \]

\[V = \pi (36-y^2) dy = \text{Force} \]

Weight of Disk

\[W = 62.4 \pi (36-y^2) dy \]

Work

\[W = 62.4 \pi \int_0^6 (y)(36-y^2) dy \]

\[\Delta W = \text{(force increment)(distance)} = (\Delta F)(x). \]

\[62.4 \pi \left[18y^2 - \frac{y^4}{4} \right]_0^6 \]

\[62.4 \pi \left[648 - 324 \right] \]

\[20,296 \pi \text{ ft-lb} \]
The solutions to Examples 2 and 3 conform to our development of work as the summation of increments in the form

$$\Delta W = \text{(force)} \cdot \text{(distance increment)} = (F)(\Delta x).$$

Another way to formulate the increment of work is

$$\Delta W = \text{(force increment)} \cdot \text{(distance)} = (\Delta F)(x).$$

This second interpretation of ΔW is useful in problems involving the movement of nonrigid substances such as fluids and chains.
Lifting a Chain In Exercises 27–30, consider a 20-foot chain that weighs 3 pounds per foot hanging from a winch 20 feet above ground level. Find the work done by the winch in winding up the specified amount of chain.

27. Wind up the entire chain.

\[
\text{Weight of Each Section} = 3 \, \text{dy}
\]

Distance Lifted \((20 - y)\)

\[W = \int_{0}^{20} (20 - y) \, dy\]

\[
\begin{align*}
W &= \int_{0}^{20} (60 - 3y) \, dy \\
&= \left[60y - \frac{3y^2}{2} \right]_{0}^{20} \\
&= 1200 - 600 = 600 \text{ ft-lb}
\end{align*}
\]
\[x^2 + y^2 = a^2 \]

\[x^2 + x^2 = a^2 \]

\[2x^2 = a^2 \]

\[x^2 = \frac{a^2}{2} \]

\[x = \frac{a}{\sqrt{2}} \]
\[A = \pi \int_{a}^{b} f(x) \, dx \]

radius \rightarrow width of rectangles