Chapter 14.1 to 14.6 Formulas

AREA OF A REGION IN THE PLANE

1. If \(R \) is defined by \(a \leq x \leq b \) and \(g_1(x) \leq y \leq g_2(x) \), where \(g_1 \) and \(g_2 \) are continuous on \([a, b] \), then the area of \(R \) is given by
 \[
 A = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} dy \, dx.
 \]
 Figure 14.2 (vertically simple)

2. If \(R \) is defined by \(c \leq y \leq d \) and \(h_1(y) \leq x \leq h_2(y) \), where \(h_1 \) and \(h_2 \) are continuous on \([c, d] \), then the area of \(R \) is given by
 \[
 A = \int_{c}^{d} \int_{h_1(y)}^{h_2(y)} dx \, dy.
 \]
 Figure 14.3 (horizontally simple)

DEFINITION OF DOUBLE INTEGRAL

If \(f \) is defined on a closed, bounded region \(R \) in the \(xy \)-plane, then the double integral of \(f \) over \(R \) is given by
\[
\iint_{R} f(x, y) \, dA = \lim_{\|A\| \to 0} \sum_{1}^{n} f(x_i, y_i) \Delta A_i
\]
provided the limit exists. If the limit exists, then \(f \) is integrable over \(R \).

VOLUME OF A SOLID REGION

If \(f \) is integrable over a plane region \(R \) and \(f(x, y) \geq 0 \) for all \((x, y)\) in \(R \), then the volume of the solid region that lies above \(R \) and below the graph of \(f \) is defined as
\[
V = \iiint f(x, y) \, dA.
\]

THEOREM 14.2 FUBINI’S THEOREM

Let \(f \) be continuous on a plane region \(R \).

1. If \(R \) is defined by \(a \leq x \leq b \) and \(g_1(x) \leq y \leq g_2(x) \), where \(g_1 \) and \(g_2 \) are continuous on \([a, b] \), then
 \[
 \iint_{R} f(x, y) \, dA = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.
 \]

2. If \(R \) is defined by \(c \leq y \leq d \) and \(h_1(y) \leq x \leq h_2(y) \), where \(h_1 \) and \(h_2 \) are continuous on \([c, d] \), then
 \[
 \iint_{R} f(x, y) \, dA = \int_{c}^{d} \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.
 \]
DEFINITION OF THE AVERAGE VALUE OF A FUNCTION OVER A REGION

If \(f \) is integrable over the plane region \(R \), then the average value of \(f \) over \(R \) is

\[
\frac{1}{A} \int_R f(x, y) \, dA
\]

where \(A \) is the area of \(R \).

THEOREM 14.3 CHANGE OF VARIABLES TO POLAR FORM

Let \(R \) be a plane region consisting of all points \((x, y) = (r \cos \theta, r \sin \theta) \) satisfying the conditions \(0 \leq g_1(\theta) \leq r \leq g_2(\theta), \alpha \leq \theta \leq \beta \), where

\[
0 \leq (\beta - \alpha) \leq 2\pi.
\]

If \(g_1 \) and \(g_2 \) are continuous on \([\alpha, \beta]\) and \(f \) is continuous on \(R \), then

\[
\int_R f(x, y) \, dA = \int_0^\beta \int_{g_1(\theta)}^{g_2(\theta)} f(r \cos \theta, r \sin \theta) r \, dr \, d\theta.
\]

NOTE: If \(z = f(x, y) \) is nonnegative on \(R \), then the integral in Theorem 14.3 can be interpreted as the volume of the solid region between the graph of \(f \) and the region \(R \). When using the integral in Theorem 14.3, be sure not to omit the extra factor of \(r \) in the integrand.

The region \(R \) is restricted to two basic types, \(r \)-simple regions and \(\theta \)-simple regions, as shown in Figure 14.29.

DEFINITION OF MASS OF A PLANAR LAMINA OF VARIABLE DENSITY

If \(\rho \) is a continuous density function on the lamina corresponding to a plane region \(R \), then the mass \(m \) of the lamina is given by

\[
m = \int_R \rho(x, y) \, dA.
\]

Variable density

MOMENTS AND CENTER OF MASS OF A VARIABLE DENSITY PLANAR LAMINA

Let \(\rho \) be a continuous density function on the planar lamina \(R \). The moments of mass with respect to the \(x \)- and \(y \)-axes are

\[
M_x = \int_R y \rho(x, y) \, dA \quad \text{and} \quad M_y = \int_R x \rho(x, y) \, dA.
\]

If \(m \) is the mass of the lamina, then the center of mass is

\[
(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m} \right).
\]

If \(R \) represents a simple plane region rather than a lamina, the point \((\bar{x}, \bar{y})\) is called the centroid of the region.
Moments of Inertia

The moments of \(M_x \) and \(M_y \) used in determining the center of mass of a lamina are sometimes called the **first moment** about the \(x \)- and \(y \)-axes. In each case, the moment is the product of a mass times a distance.

\[
M_x = \int \int (y) \rho(x, y) \, dA \quad \text{and} \quad M_y = \int \int (x) \rho(x, y) \, dA
\]

You will now look at another type of moment—the **second moment**, or the **moment of inertia** of a lamina about a line. In the same way that mass is a measure of the tendency of matter to resist a change in straight-line motion, the moment of inertia about a line is a measure of the tendency of matter to resist a change in rotational motion. For example, if a particle of mass \(m \) is a distance \(d \) from a fixed line, its moment of inertia about the line is defined as

\[
I = md^2 = \text{(mass)(distance)}^2.
\]

As with moments of mass, you can generalize this concept to obtain the moments of inertia about the \(x \)- and \(y \)-axes of a lamina of variable density. These second moments are denoted by \(I_x \) and \(I_y \), and in each case the moment is the product of a mass times the square of a distance.

\[
I_x = \int \int (y^2) \rho(x, y) \, dA \quad \text{and} \quad I_y = \int \int (x^2) \rho(x, y) \, dA
\]

The sum of the moments \(I_x \) and \(I_y \) is called the **polar moment of inertia** and is denoted by \(I_p \).

The moment of inertia \(I \) of a revolving lamina can be used to measure its kinetic energy. For example, suppose a planar lamina is revolving about a line with an **angular speed** of \(\omega \) radians per second, as shown in Figure 14.41. The kinetic energy \(E \) of the revolving lamina is

\[
E = \frac{1}{2} I \omega^2. \quad \text{Kinetic energy for rotational motion}
\]

On the other hand, the kinetic energy \(E \) of a mass \(m \) moving in a straight line at a velocity \(v \) is

\[
E = \frac{1}{2} mv^2. \quad \text{Kinetic energy for linear motion}
\]

So, the kinetic energy of a mass moving in a straight line is proportional to its mass, but the kinetic energy of a mass revolving about an axis is proportional to its moment of inertia.

The **radius of gyration** \(r \) of a revolving mass \(m \) with moment of inertia \(I \) is defined as

\[
r = \sqrt{\frac{I}{m}}. \quad \text{Radius of gyration}
\]

If the entire mass were located at a distance \(r \) from its axis of revolution, it would have the same moment of inertia and, consequently, the same kinetic energy. For instance, the radius of gyration of the lamina in Example 4 about the \(x \)-axis is given by

\[
r = \sqrt{\frac{I_x}{m}} = \sqrt{\frac{32,768k/315}{256k/15}} = \sqrt{\frac{128}{21}} = 2.469.
\]
DEFINITION OF SURFACE AREA

If f and its first partial derivatives are continuous on the closed region R in the xy-plane, then the area of the surface S given by $z = f(x, y)$ over R is defined as

\[
\text{Surface area} = \iint_R \sqrt{1 + \left[f_x(x, y)\right]^2 + \left[f_y(x, y)\right]^2} \, dA.
\]

As an aid to remembering the double integral for surface area, it is helpful to note its similarity to the integral for arc length.

- **Length on x-axis:** $\int_a^b ds$
- **Arc length in xy-plane:** $\int_a^b \sqrt{1 + \left[f(x)\right]^2} \, dx$
- **Area in xy-plane:** $\int_a^b \int_{g_1(x)}^{g_2(x)} \, dy \, dx$
- **Surface area in space:** $\iint_R \sqrt{1 + \left[f_x(x, y)\right]^2 + \left[f_y(x, y)\right]^2} \, dA$

DEFINITION OF TRIPLE INTEGRAL

If f is continuous over a bounded solid region Q, then the **triple integral** of f over Q is defined as

\[
\iiint_Q f(x, y, z) \, dV = \lim_{|P| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta V_i
\]

provided the limit exists. The **volume** of the solid region Q is given by

\[
\text{Volume of } Q = \iiint_Q \, dV.
\]

THEOREM 14.4 EVALUATION BY ITERATED INTEGRALS

Let f be continuous on a solid region Q defined by

\[
a \leq x \leq b, \quad h_1(x) \leq y \leq h_2(x), \quad g_1(x, y) \leq z \leq g_2(x, y)
\]

where h_1, h_2, g_1, and g_2 are continuous functions. Then,

\[
\iiint_Q f(x, y, z) \, dV = \int_a^b \int_{h_1(x)}^{h_2(x)} \int_{g_1(x, y)}^{g_2(x, y)} f(x, y, z) \, dz \, dy \, dx.
\]
Center of Mass and Moments of Inertia

In the remainder of this section, two important engineering applications of triple integrals are discussed. Consider a solid region \(Q \) whose density is given by the density function \(\rho \). The center of mass of a solid region \(Q \) of mass \(m \) is given by \((\bar{x}, \bar{y}, \bar{z})\), where

\[
m = \iiint_{Q} \rho(x, y, z) \, dV \quad \text{Mass of the solid}
\]

\[
M_{xz} = \iiint_{Q} xp(x, y, z) \, dV \quad \text{First moment about \(yz\)-plane}
\]

\[
M_{yz} = \iiint_{Q} yp(x, y, z) \, dV \quad \text{First moment about \(xz\)-plane}
\]

\[
M_{zx} = \iiint_{Q} zp(x, y, z) \, dV \quad \text{First moment about \(xy\)-plane}
\]

and

\[
\bar{x} = \frac{M_{yz}}{m} \quad \bar{y} = \frac{M_{zx}}{m} \quad \bar{z} = \frac{M_{xy}}{m}
\]

The quantities \(M_{xz}, M_{yz}, \) and \(M_{zx} \) are called the first moments of the region \(Q \) about the \(yz\)-, \(xz\)-, and \(xy\)-planes, respectively.

The first moments for solid regions are taken about a plane, whereas the second moments for solids are taken about a line. The second moments (or moments of inertia) about the \(x\)-, \(y\)-, and \(z\)-axes are as follows.

\[
I_x = \iiint_{Q} (y^2 + z^2)p(x, y, z) \, dV \quad \text{Moment of inertia about \(x\)-axis}
\]

\[
I_y = \iiint_{Q} (x^2 + z^2)p(x, y, z) \, dV \quad \text{Moment of inertia about \(y\)-axis}
\]

\[
I_z = \iiint_{Q} (x^2 + y^2)p(x, y, z) \, dV \quad \text{Moment of inertia about \(z\)-axis}
\]

For problems requiring the calculation of all three moments, considerable effort can be saved by applying the additive property of triple integrals and writing

\[
I_x = I_{xz} + I_{xy} \quad I_y = I_{yz} + I_{yx} \quad \text{and} \quad I_z = I_{zx} + I_{yz}
\]

where \(I_{yx}, I_{zx}, \) and \(I_{yz}\) are as follows.

\[
I_{xy} = \iiint_{Q} z^2p(x, y, z) \, dV
\]

\[
I_{xz} = \iiint_{Q} y^2p(x, y, z) \, dV
\]

\[
I_{yz} = \iiint_{Q} x^2p(x, y, z) \, dV
\]