Chapter 14.1 to 15.2 Formulas

AREA OF A REGION IN THE PLANE

1. If R is defined by $a \leq x \leq b$ and $g_1(y) \leq y \leq g_2(y)$, where g_1 and g_2 are continuous on $[a, b]$, then the area of R is given by

\[A = \int_a^b \int_{g_1(y)}^{g_2(y)} dy \, dx. \]

Figure 14.2 (vertically simple)

2. If R is defined by $c \leq y \leq d$ and $h_1(x) \leq x \leq h_2(x)$, where h_1 and h_2 are continuous on $[c, d]$, then the area of R is given by

\[A = \int_c^d \int_{h_1(x)}^{h_2(x)} dx \, dy. \]

Figure 14.3 (horizontally simple)

DEFINITION OF DOUBLE INTEGRAL

If f is defined on a closed, bounded region R in the xy-plane, then the double integral of f over R is given by

\[\iint_R f(x, y) \, dA = \lim_{\|R\| \to 0} \sum f(x_i, y_i) \, \Delta A. \]

provided the limit exists. If the limit exists, then f is integrable over R.

VOLUME OF A SOLID REGION

If f is integrable over a plane region R and $f(x, y) \geq 0$ for all (x, y) in R, then the volume of the solid region that lies above R and below the graph of f is defined as

\[V = \iint_R f(x, y) \, dA. \]

THEOREM 14.2 FUBIN'S THEOREM

Let f be continuous on a plane region R.

1. If R is defined by $a \leq x \leq b$ and $g_1(y) \leq y \leq g_2(y)$, where g_1 and g_2 are continuous on $[a, b]$, then

\[\iint_R f(x, y) \, dA = \int_a^b \int_{g_1(y)}^{g_2(y)} f(x, y) \, dy \, dx. \]

2. If R is defined by $c \leq y \leq d$ and $h_1(x) \leq x \leq h_2(x)$, where h_1 and h_2 are continuous on $[c, d]$, then

\[\iint_R f(x, y) \, dA = \int_c^d \int_{h_1(x)}^{h_2(x)} f(x, y) \, dx \, dy. \]
DEFINITION OF THE AVERAGE VALUE OF A FUNCTION OVER A REGION

If \(f \) is integrable over the plane region \(R \), then the average value of \(f \) over \(R \) is

\[
\frac{1}{A} \int_R f(x, y) \, dA
\]

where \(A \) is the area of \(R \).

THEOREM 14.3 CHANGE OF VARIABLES TO POLAR FORM

Let \(R \) be a plane region consisting of all points \((x, y) = (r \cos \theta, r \sin \theta)\)

satisfying the conditions \(0 \leq g_1(\theta) \leq r \leq g_2(\theta), \alpha \leq \theta \leq \beta \), where

\[0 \leq (\beta - \alpha) \leq 2\pi. \]

If \(g_1 \) and \(g_2 \) are continuous on \([\alpha, \beta]\) and \(f \) is continuous on \(\overline{R} \), then

\[
\int_{\alpha}^{\beta} \int_{g_1(\theta)}^{g_2(\theta)} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta.
\]

NOTE

If \(z = f(x, y) \) is nonnegative on \(R \), then the integral in Theorem 14.3 can be interpreted as the volume of the solid region between the graph of \(f \) and the region \(R \). When using the integral in Theorem 14.3, be sure not to omit the extra factor of \(r \) in the integrand.

The region \(R \) is restricted to two basic types, \(r \)-simple regions and \(\theta \)-simple regions, as shown in Figure 14.29.

DEFINITION OF MASS OF A PLANAR LAMINA OF VARIABLE DENSITY

If \(\rho \) is a continuous density function on the lamina corresponding to a plane region \(R \), then the mass \(m \) of the lamina is given by

\[
m = \int_R \rho(x, y) \, dA.
\]

MOMENTS AND CENTER OF MASS OF A VARIABLE DENSITY PLANAR LAMINA

Let \(\rho \) be a continuous density function on the planar lamina \(R \). The moments of mass with respect to the \(x \)- and \(y \)-axes are

\[
M_x = \int_R y\rho(x, y) \, dA \quad \text{and} \quad M_y = \int_R x\rho(x, y) \, dA.
\]

If \(m \) is the mass of the lamina, then the center of mass is

\[
(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m} \right).
\]

If \(R \) represents a simple plane region rather than a lamina, the point \((\bar{x}, \bar{y})\) is called the centroid of the region.
Moments of Inertia

The moments of inertia used in determining the center of mass of a lamina are sometimes called the first moments about the x- and y-axes. In each case, the moment is the product of a mass times a distance.

\[M_x = \int \int (y) \rho(x, y) \, dA \]

Distance to x-axis \hspace{1cm} \text{Mass} \hspace{1cm} \text{Distance to y-axis}

\[M_y = \int \int (x) \rho(x, y) \, dA \]

You will now look at another type of moment—the second moment, or the moment of inertia of a lamina about a line. In the same way that mass is a measure of the tendency of matter to resist a change in straight-line motion, the moment of inertia about a line is a measure of the tendency of matter to resist a change in rotational motion. For example, if a particle of mass \(m \) is a distance \(d \) from a fixed line, its moment of inertia about the line is defined as

\[I = md^2 = (\text{mass})(\text{distance})^2. \]

As with moments of mass, you can generalize this concept to obtain the moments of inertia about the x- and y-axes of a lamina of variable density. These second moments are denoted by \(I_x \) and \(I_y \), and in each case the moment is the product of a mass times the square of a distance.

\[I_x = \int \int (y^2) \rho(x, y) \, dA \]

Square of distance to x-axis \hspace{1cm} \text{Mass} \hspace{1cm} \text{Square of distance to y-axis}

\[I_y = \int \int (x^2) \rho(x, y) \, dA \]

The sum of the moments \(I_x \) and \(I_y \) is called the polar moment of inertia and is denoted by \(I_p \).

The moment of inertia \(I \) of a revolving lamina can be used to measure its kinetic energy. For example, suppose a planar lamina is revolving about a line with an angular speed of \(\omega \) radians per second, as shown in Figure 14.41. The kinetic energy \(E \) of the revolving lamina is

\[E = \frac{1}{2} I \omega^2. \quad \text{Kinetic energy for rotational motion} \]

On the other hand, the kinetic energy \(E \) of a mass \(m \) moving in a straight line at a velocity \(v \) is

\[E = \frac{1}{2} mv^2. \quad \text{Kinetic energy for linear motion} \]

So, the kinetic energy of a mass moving in a straight line is proportional to its mass, but the kinetic energy of a mass revolving about an axis is proportional to its moment of inertia.

The radius of gyration \(r \) of a revolving mass \(m \) with moment of inertia \(I \) is defined as

\[r = \sqrt{\frac{I}{m}}. \quad \text{Radius of gyration} \]

If the entire mass were located at a distance \(r \) from its axis of revolution, it would have the same moment of inertia and, consequently, the same kinetic energy. For instance, the radius of gyration of the lamina in Example 4 about the \(x \)-axis is given by

\[r = \sqrt{\frac{I_x}{m}} = \sqrt{\frac{32,768k/315}{256k/15}} = \sqrt{\frac{128}{21}} = 2.469. \]

3
DEFINITION OF SURFACE AREA

If \(f \) and its first partial derivatives are continuous on the closed region \(R \) in the \(xy \)-plane, then the area of the surface \(S \) given by \(z = f(x, y) \) over \(R \) is defined as

\[
\text{Surface area} = \iint_R dS = \iint_R \sqrt{1 + [f_x(x, y)]^2 + [f_y(x, y)]^2} \, dA.
\]

As an aid to remembering the double integral for surface area, it is helpful to note its similarity to the integral for arc length.

\[
\text{Length on } x\text{-axis: } \int_a^b dx
\]

\[
\text{Arc length in } xy\text{-plane: } \int_a^b \sqrt{1 + [f'(x)]^2} \, dx
\]

\[
\text{Area in } xy\text{-plane: } \iint_D dA
\]

\[
\text{Surface area in space: } \iiint_Q dS = \iiint_Q \sqrt{1 + [f_x(x, y)]^2 + [f_y(x, y)]^2} \, dA
\]

DEFINITION OF TRIPLE INTEGRAL

If \(f \) is continuous over a bounded solid region \(Q \), then the triple integral of \(f \) over \(Q \) is defined as

\[
\iiint_Q f(x, y, z) \, dV = \lim_{m \to \infty} \sum_{i=1}^m f(x_i, y_i, z_i) \Delta V_i
\]

provided the limit exists. The volume of the solid region \(Q \) is given by

\[
\text{Volume of } Q = \iiint_Q dV.
\]

THEOREM 14.4 EVALUATION BY ITERATED INTEGRALS

Let \(f \) be continuous on a solid region \(Q \) defined by

\[
a \leq x \leq b, \quad h_1(y) \leq y \leq h_2(y), \quad g_1(x, y) \leq z \leq g_2(x, y)
\]

where \(h_1, h_2, g_1, \) and \(g_2 \) are continuous functions. Then,

\[
\iiint_Q f(x, y, z) \, dV = \int_a^b \left[\int_{h_1(x)}^{h_2(x)} f(x, y, z) \, dy \right] dx.
\]
Center of Mass and Moments of Inertia

In the remainder of this section, two important engineering applications of triple integrals are discussed. Consider a solid region Q whose density is given by the density function ρ. The center of mass of a solid region Q of mass m is given by $(\bar{x}, \bar{y}, \bar{z})$, where

$$m = \iiint_{Q} \rho(x, y, z) \, dV$$
Mass of the solid

$$M_{yz} = \iiint_{Q} x \rho(x, y, z) \, dV$$
First moment about yz-plane

$$M_{xz} = \iiint_{Q} y \rho(x, y, z) \, dV$$
First moment about xz-plane

$$M_{xy} = \iiint_{Q} z \rho(x, y, z) \, dV$$
First moment about xy-plane

and

$$\bar{x} = \frac{M_{yz}}{m} \quad \bar{y} = \frac{M_{xz}}{m} \quad \bar{z} = \frac{M_{xy}}{m}$$

The quantities M_{yz}, M_{xz}, and M_{xy} are called the first moments of the region Q about the yz-, xz-, and xy-planes, respectively.

The first moments for solid regions are taken about a plane, whereas the second moments for solids are taken about a line. The second moments (or moments of inertia) about the x-, y-, and z-axes are as follows.

$$I_x = \iiint_{Q} (y^2 + z^2) \rho(x, y, z) \, dV$$
Moment of inertia about x-axis

$$I_y = \iiint_{Q} (x^2 + z^2) \rho(x, y, z) \, dV$$
Moment of inertia about y-axis

$$I_z = \iiint_{Q} (x^2 + y^2) \rho(x, y, z) \, dV$$
Moment of inertia about z-axis

For problems requiring the calculation of all three moments, considerable effort can be saved by applying the additive property of triple integrals and writing

$$I_x = I_{xz} + I_{xy} \quad I_y = I_{yz} + I_{xy} \quad and \quad I_z = I_{xz} + I_{yz}$$

where I_{xy}, I_{xz}, and I_{yz} are as follows.

$$I_{xy} = \iiint_{Q} z^2 \rho(x, y, z) \, dV$$

$$I_{xz} = \iiint_{Q} y^2 \rho(x, y, z) \, dV$$

$$I_{yz} = \iiint_{Q} x^2 \rho(x, y, z) \, dV$$
Triple Integrals in Cylindrical Coordinates

$$\int_Q \int f(x, y, z) \, dV = \int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} \int_{r_1}^{r_2} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta.$$

Triple Integrals in Spherical Coordinates

$$\int_Q \int f(x, y, z) \, dV = \int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} \int_{\rho_1}^{\rho_2} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$$

Jacobian

DEFINITION OF THE JACOBIAN

If \(x = g(u, v) \) and \(y = h(u, v) \), then the Jacobian of \(x \) and \(y \) with respect to \(u \) and \(v \), denoted by \(\frac{\partial(x, y)}{\partial(u, v)} \), is

$$\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

Change of Variables for Double Integrals

THEOREM 14.5 CHANGE OF VARIABLES FOR DOUBLE INTEGRALS

Let \(R \) be a vertically or horizontally simple region in the \(xy \)-plane, and let \(S \) be a vertically or horizontally simple region in the \(uv \)-plane. Let \(T \) from \(S \) to \(R \) be given by \(T(u, v) = (x, y) = (g(u, v), h(u, v)) \), where \(g \) and \(h \) have continuous first partial derivatives. Assume that \(T \) is one-to-one except possibly on the boundary of \(S \). If \(f \) is continuous on \(R \), and \(\frac{\partial(x, y)}{\partial(u, v)} \) is nonzero on \(S \), then

$$\int_R f(x, y) \, dx \, dy = \int_S f(g(u, v), h(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv.$$
Vector Fields

DEFINITION OF VECTOR FIELD

A **vector field** over a **plane region** R is a function $F(x, y)$ that assigns a vector $F(x, y)$ to each point in R.

A **vector field** over a **solid region** Q in space is a function F that assigns a vector $F(x, y, z)$ to each point in Q.

DEFINITION OF INVERSE SQUARE FIELD

Let $r(t) = xi + yj + zk$ be a position vector. The vector field F is an inverse square field if

$$F(x, y, z) = \frac{k}{||r||^3} \hat{u}$$

where k is a real number and $\hat{u} = r/||r||$ is a unit vector in the direction of r.

DEFINITION OF CONSERVATIVE VECTOR FIELD

A vector field F is called **conservative** if there exists a differentiable function f such that $F = \nabla f$. The function f is called the **potential function** for F.

THEOREM 15.1 TEST FOR CONSERVATIVE VECTOR FIELD IN THE PLANE

Let M and N have continuous first partial derivatives on an open disk R. The vector field given by $F(x, y) = Mi + Nj$ is conservative if and only if

$$\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}.$$

DEFINITION OF CURL OF A VECTOR FIELD

The curl of $F(x, y, z) = Mi + Nj +Pk$ is

$$\text{curl } F(x, y, z) = \nabla \times F(x, y, z) = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{vmatrix} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right)\hat{i} - \left(\frac{\partial P}{\partial z} - \frac{\partial M}{\partial x}\right)\hat{j} + \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y}\right)\hat{k}.$$

THEOREM 15.2 TEST FOR CONSERVATIVE VECTOR FIELD IN SPACE

Suppose that M, N, and P have continuous first partial derivatives in an open sphere Q in space. The vector field given by $F(x, y, z) = Mi + Nj +Pk$ is conservative if and only if

$$\text{curl } F(x, y, z) = 0.$$

That is, F is conservative if and only if

$$\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z}, \quad \frac{\partial P}{\partial z} = \frac{\partial M}{\partial x}, \quad \text{and} \quad \frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}.$$
DEFINITION OF DIVERGENCE OF A VECTOR FIELD

The divergence of \(\mathbf{F}(x, y) = Mi + NJ \) is

\[
\text{div} \, \mathbf{F}(x, y) = \nabla \cdot \mathbf{F}(x, y) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}.
\]

Plane

The divergence of \(\mathbf{F}(x, y, z) = Mi + NJ + PK \) is

\[
\text{div} \, \mathbf{F}(x, y, z) = \nabla \cdot \mathbf{F}(x, y, z) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}.
\]

Space

If \(\text{div} \, \mathbf{F} = 0 \), then \(\mathbf{F} \) is said to be divergence free.

\[\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}, \quad a \leq t \leq b \]

is smooth if

\[
\frac{dx}{dt} \quad \text{and} \quad \frac{dy}{dt} \quad \frac{dz}{dt}.
\]

are continuous on \([a, b]\) and not simultaneously 0 on \((a, b)\). Similarly, a space curve \(\mathbf{C} \) given by

\[\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, \quad a \leq t \leq b \]

is smooth if

\[
\frac{dx}{dt}, \quad \frac{dy}{dt}, \quad \text{and} \quad \frac{dz}{dt}
\]

are continuous on \([a, b]\) and not simultaneously 0 on \((a, b)\). A curve \(C \) is piecewise smooth if the interval \([a, b]\) can be partitioned into a finite number of subintervals, on each of which \(C \) is smooth.
DEFINITION OF LINE INTEGRAL

If \(f \) is defined in a region containing a smooth curve \(C \) of finite length, then the **line integral of \(f \) along \(C \)** is given by

\[
\int_C f(x, y) \, ds = \lim_{||\Delta||\to 0} \sum_{i=1}^n f(x_i, y_i) \Delta s_i \quad \text{Plane}
\]

or

\[
\int_C f(x, y, z) \, ds = \lim_{||\Delta||\to 0} \sum_{i=1}^n f(x_i, y_i, z_i) \Delta s_i \quad \text{Space}
\]

provided this limit exists.

To evaluate a line integral over a plane curve \(C \) given by \(\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} \), use the fact that

\[ds = ||\mathbf{r}'(t)|| \, dt = \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt. \]

A similar formula holds for a space curve, as indicated in Theorem 15.4.

THEOREM 15.4 EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Let \(f \) be continuous in a region containing a smooth curve \(C \). If \(C \) is given by \(\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} \), where \(a \leq t \leq b \), then

\[
\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt.
\]

If \(C \) is given by \(\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} \), where \(a \leq t \leq b \), then

\[
\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, dt.
\]

Note that if \(f(x, y, z) = 1 \), the line integral gives the area length of the curve \(C \), as defined in Section 12.5. That is,

\[
\int_C 1 \, ds = \int_a^b ||\mathbf{r}'(t)|| \, dt = \text{length of curve } C.
\]
To Compute Work

Definition of the Line Integral of a Vector Field

Let \(\mathbf{F} \) be a continuous vector field defined on a smooth curve \(C \) given by \(\mathbf{r}(t) \), \(a \leq t \leq b \). The line integral of \(\mathbf{F} \) on \(C \) is given by

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_a^b \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}'(t) \, dt.
\]

Line Integrals in Differential Form

This differential form can be extended to three variables. The parentheses are often omitted, as follows.

\[
\int_C M \, dx + N \, dy \quad \text{and} \quad \int_C M \, dx + N \, dy + P \, dz
\]

Note. The orientation of \(C \) affects the value of the differential form of a line integral. Specifically, if \(-C \) has the orientation opposite to that of \(C \), then

\[
\int_C M \, dx + N \, dy = -\int_C M \, dx + N \, dy.
\]

So, of the three line integral forms presented in this section, the orientation of \(C \) does not affect the form \(\int_C f(x, y) \, ds \), but it does affect the vector form and the differential form.