1. Evaluate \(\int_0^\pi \int_{\pi/6}^{\pi/2} 2y \cos x \, dx \, dy \).
 (a) \(\frac{4 - \pi}{2} \)
 (b) \(-\frac{\pi}{2} \)
 (c) \(\frac{\pi - 4}{2} \)
 (d) \(-\pi \)
 (e) None of these

2. Evaluate \(\int_{R} \int \frac{x}{\sqrt{1 + y^2}} \, dA \) where \(R \) is the region in the first quadrant bounded by the graphs of \(y = x^2 \), \(y = 4 \), and \(x = 0 \).
 (a) \(\frac{1}{2} \sqrt{17} - 1 \)
 (b) \(4 \sqrt{17} - \frac{10 \sqrt{5}}{5} + 1 \)
 (c) \(68 \sqrt{17} \)
 (d) \(34 \sqrt{17} \)
 (e) None of these

3. Evaluate \(\int_0^1 \int_{2x}^1 e^{x^2} \, dy \, dx \) by reversing the order of integration.
 (a) 0
 (b) \(\frac{1}{4} (e^4 - 1) \)
 (c) \(\frac{3e^4 + 1}{8} \)
 (d) \(\frac{1}{4} e^4 \)
 (e) None of these

4. Use a double integral to find the volume of the solid in the first octant bounded above by the plane \(z = 5 - 2y \) and below by the rectangle in the \(xy \)-plane: \(\{(x, y): 0 \leq x \leq 3, \ 0 \leq y \leq 2\} \).
 (a) 12
 (b) 6
 (c) 18
 (d) 9
 (e) None of these

5. Use polar coordinates to evaluate \(\int_{R} \int \sqrt{x^2 + y^2} \, dA \) where \(R \) is the region in the \(xy \)-plane enclosed by the graphs of \(x^2 + y^2 = 9 \).
 (a) \(\frac{512 \sqrt{2} - 40}{15} \)
 (b) \(6\pi \)
 (c) \(9\pi \)
 (d) \(18\pi \)
 (e) None of these
6. Find the limits of integration for calculating the volume of the solid \(\Omega \) enclosed by the graph of \(y^2 = x, z = 0 \) and \(x + z = 1 \) if \(V = \iiint_{\Omega} dz \, dy \, dx \).

\[
\text{Graph In XY Plane - Go Ahead & Solve}
\]

(a) \(\int_0^1 \int_0^{\sqrt{x}} \int_0^{1-x} dz \, dy \, dx \)

(b) \(\int_0^1 \int_0^{\sqrt{x}} \int_0^{1-x} dz \, dy \, dx \)

(c) \(\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} \int_0^{1-x} dz \, dy \, dx \)

(d) \(\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} \int_0^{1-x} dz \, dy \, dx \)

(e) None of these

7. A lamina has the shape of a closed region bounded by the graphs of \(x^2 + y^2 = 4 \) and \(x + y = 2 \), and has a density function of \(p(x,y) = xy \). Make a 2-dimensional graph of the region, write the iterated integral for the moment of inertia about the y-axis, and solve to find \(I_y \).

8. Find the mass of the region from Exercise 7.