Section 3.2
Conditional Probability and the Multiplication Rule

The multiplication rules can be used to find the probability of two or more events that occur in sequence.

Conditional probability is the probability of an event occurring, given that another event has already occurred. The conditional probability of event B occurring, given that event A has already occurred is denoted by:

\[P(B|A) \quad \text{read as "the probability of B given A"} \]

Independent Events

Two events A and B are **independent events** if the fact that A occurs does not affect the probability of B occurring. When two events are independent, the probability of both occurring is:

\[P(A \text{ and } B) = P(A) \cdot P(B) \]

Example: Flip a coin then roll a die.

\[P(\text{Heads and Roll 1}) = P(\text{Heads}) \cdot P(\text{Roll 1}) \]

\[= \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12} \]

Dependent Events

Two events are said to be **dependent events** if the occurrence of the first event affects the occurrence of the second event in such a way that the probability is changed.

When two events are dependent, the probability of both occurring is

\[P(A \text{ and } B) = P(A) \cdot P(B|A) \]

Example: There are 9 batteries in a drawer; 5 are dead and 4 are good. Find the probability of randomly selecting 2 good batteries to put in a flashlight.

\[P(\text{Good and Good}) = \frac{5}{9} \cdot \frac{4}{8} = \frac{5}{18} = .278 \]

Find the probability of randomly selecting 3 dead batteries to put in a flashlight.

\[P(D, D, D) = \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} = \frac{1}{21} = .048 \]

The key word **AND** tells us to **MULTIPLY** probabilities.

Examples with Independent and Dependent Events
What is the probability that a randomly selected classmate used a seat belt the last time they got into a car?

\[\frac{20}{37} = 0.541 \]

What is the probability that 4 randomly selected classmates used a seat belt?

Without Replacement:

\[\frac{20}{37} \cdot \frac{19}{36} \cdot \frac{18}{35} \cdot \frac{17}{34} = 0.276 \]

With Replacement:

\[\frac{20}{27} \cdot \frac{20}{27} \cdot \frac{20}{27} \cdot \frac{20}{27} = 0.301 \]

For large populations and small samples (no more than 5%) assume replacement.

The Gallup Poll reported that 52% of Americans used a seat belt the last time they got into a car. If four Americans are selected at random, find the probability that all used a seat belt the last time they got into a car.

\[P(\text{all 4}) = 0.52 \cdot 0.52 \cdot 0.52 \cdot 0.52 = 0.073 \]

Additional questions:

Find the probability that a person did not use a seat belt.

\[P(\text{used seatbelt}) = 0.52 \quad P(\text{not use seatbelt}) = 0.48 \]

If four people are selected at random, find the probability that none of them used a seat belt.

\[P(\text{none of 4}) = (0.48)(0.48)(0.48)(0.48) = 0.053 \]

If 2 cards are selected from a standard deck of 52 cards without replacement, find these probabilities.

a) Both are spades.

\[P(\text{spade and spade}) = \frac{13}{52} \cdot \frac{12}{51} = \frac{1}{17} \]

b) Both are the same suit.

\[P(\text{suit and same suit}) = \frac{13}{52} \cdot \frac{12}{51} = \frac{4}{17} \]

c) Both are kings.

\[P(K \text{ and } K) = \frac{4}{13} \cdot \frac{3}{51} = \frac{1}{66} \]

\[P(A \text{ and } B) = P(A) - P(B|A) \]
Section 3.2 Continued

Probabilities for “At Least One”

Use for problems like #21

The complement of “at least one” is “none”, so

\[P(\text{at least one}) = 1 - P(\text{none}) \]

Example:
The Gallup Poll reported that 52% of Americans used a seat belt the last time they got into a car. If four people are selected at random, find the probability that at least one of them used a seat belt.

\[\text{So 48\% did not use a seat belt} \]

\[\text{So to find} \]

\[P(\text{at least 1 used belt}) = 1 - P(\text{none used belt}) \]

\[= 1 - (0.48)^4 \]

\[= 0.947 \]

Example:
A lot of 18 portable radios contains 3 defective ones. Two are selected without replacement and tested.

Independent events

a) Find the probability both are not defective.

\[P(\text{not def, not def}) = \frac{15}{18} \cdot \frac{14}{17} = 0.686 \]

b) Find the probability both are defective.

\[P(\text{def, def}) = \frac{3}{18} \cdot \frac{2}{17} = 0.020 \]

c) Find the probability that at least one will be defective.

\[P(\text{at least 1 def}) = 1 - P(\text{none are defective}) \]

\[= 1 - 0.686 \]

\[= 0.314 \]
Conditional Probability

Example:
A blood bank catalogs the types of blood given by donors during the last five days.

<table>
<thead>
<tr>
<th>Type O</th>
<th>Type A</th>
<th>Type B</th>
<th>Type AB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh-positive</td>
<td>156</td>
<td>139</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>Rh-Negative</td>
<td>28</td>
<td>25</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>184</td>
<td>164</td>
<td>45</td>
<td>16</td>
</tr>
</tbody>
</table>

A donor is selected at random.
Find the probability the donor is Rh-negative given they have type O blood.

\[P(Rh^- | O) = \frac{28}{184} \approx 0.152 \]

Find the probability the donor has type B given they are Rh-positive.

\[P(B | Rh^+) = \frac{37}{344} = 0.108 \]

The Multiplication Rule and Conditional Probability

Solve \(P(A \text{ and } B) = P(A) \cdot P(B | A) \) for \(P(B | A) \).

The conditional probability of event B occurring, given that event A has occurred, is

\[P(B | A) = \frac{P(A \text{ and } B)}{P(A)} \]

Example: The probability a MCC student is enrolled in an online course is 0.42. The probability a MCC student is enrolled in an on-campus class is 0.88. The probability that a MCC student is enrolled in an online and an on-campus class is 0.30.

Given: \(P(\text{Online}) = 0.42 \)
\(P(\text{On Campus}) = 0.88 \)
\(P(\text{Online and On Campus}) = 0.30 \)

Find the probability a MCC student is enrolled in an on-campus class given that they are enrolled in an online class.

\[P(\text{On Campus} | \text{Online}) = \frac{P(\text{On Campus and Online})}{P(\text{Online})} = \frac{0.3}{0.42} = 0.714 \]

Find the probability that an on-campus student is also an online student.

\[P(\text{Online} | \text{On Campus}) = \frac{P(\text{Online and On Campus})}{P(\text{On Campus})} = \frac{0.3}{0.88} = 0.341 \]